(10 Marks)

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

explain.

Seventh Semester B.E. Degree Examination, Dec.2017/Jan.2018 VLSI Circuits and Design

Time: 3 hrs. Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

		그 그 그 그는 그 전에 가고 뭐 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그 그	
		<u>PART – A</u>	
1	a.	With neat diagrams explain the operation of enhancement mode nMOS trans	istor with
			(06 Marks)
	b.		(09 Marks)
	c.		(05 Marks)
2	a.	Show that pull-up to pull-down ratio for nMOS inverter driven thro' one or	more pass
		transistor is 8:1.	(08 Marks)
	b.	Explain Latch-up in CMOS circuits with relevant diagrams and waveforms.	(06 Marks)
	c.	Define MOS transistor trans-conductance and output conductance and derive experience	ression for
		g _m and g _{ds} .	(06 Marks)
3	a.	With relevant diagrams explain Lambda (λ) based design rules as applicable to	wires and
		transistors.	(08 Marks)
	Ь.	Draw the circuit symbol and stick diagrams for CMOS inverter.	(05 Marks)
	c.	Draw the stick diagram and layout for nMOS shift register cell.	(07 Marks)
4	a.	What is sheet resistance? Calculate sheet resistance for transistor channel if $L = 8$	$8\lambda w = 2\lambda$
7	α.	and n-channel $R_s = 10^4 \Omega/\text{square}$.	(04 Marks)
	b.	With schematic diagrams explain inverting and non inverting super buffers.	(08 Marks)
	c.	Explain three different kinds of wiring capacitances.	(08 Marks)
	٠.		,
		PART – B	
5	a.	Derive scaling factor for any ten device parameters.	(10 Marks)
	b.	Discuss the limitation of scaling on interconnect and contact resistance.	(10 Marks)
6	a.	Draw the stick diagram for 2-input CMOS NAND gate.	(05 Marks)
	b.	Explain in detail Pseudo- nMOS logic taking inverter as an example.	(07 Marks)
	c.	With block diagram and stick diagram explain the design approach of a parity	generator.
		Using nMOS logic.	(08 Marks)
7	a.	Draw and explain combinational circuit to generate two phase clocking.	(06 Marks)
	b.	Explain percharge bus concept with relevant diagrams.	(06 Marks)
	c.	Explain the operation of 4×4 cross bar switch with neat diagram.	(08 Marks)
8	a.	Explain implementation of ALU functions with an adder using appropriate f	igures and
		expressions.	(10 Marks)
		and buffored sum	output and

* * * * *

b. Draw the structure of multiplexer based adder logic with stored and buffered sum output and